ON FINITE DIMENSIONAL SUBSPACES OF BANACH SPACES

BY A. LAZAR AND M. ZIPPIN*

ABSTRACT

The common Banach spaces are investigated with respect to some properties of their finite dimensional subspaces.

1. It is well-known (by the Hahn-Banach theorem) that for each element x in a Banach space X one can find a functional $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||. The following natural question arises: Given a finite dimensional subspace $E \subset X$, is it possible to find a finite dimensional subspace $F \subset X^*$ such that for each $x \in E ||x|| = \sup_{f \in S_F} |f(x)|$?

In this paper we show that the answer is negative, and investigate some similar properties concerning finite dimensional subspaces. We prove that the spaces $c_0(S)$ and real L_p , where p is an even integer, satisfy the above-mentioned condition, while C and L_p for all other p's do not satisfy it.

The terminology and notations are generally the same as in [1]. S_X denotes the closed unit ball of the Banach space X. If F is a subspace of a conjugate space X^* then $F_{\perp} = \{x : x \in X, f(x) = 0 \text{ for all } f \in F\}$. If $E \subset X$ then $E^{\perp} = \{f : f \in X^*, f(x) = 0 \text{ for all } x \in E\}$.

- 2. Let us discuss the following conditions on an infinite dimensional normed space X, concerning its finite dimensional subspaces:
- (1) For every finite dimensional subspace $E \subset X$ there exists a subspace $F \subset X^*$ such that for each $x \in E$ $||x|| = \sup_{f \in S_F} |f(x)|$ and F_{\perp} is infinite dimensional.
- (2) For every finite dimensional subspace $E \subset X$ it is possible to find a finite dimensional $F \subset X^*$ such that for each $x \in E$ $||x|| = \sup_{f \in S_F} |f(x)|$.
- (3) For every finite dimensional subspace $E \subset X$ there exist a finite dimensional subspace $G \subset X$ such that $E \subset G$ and a projection P_G of X onto G with $||P_G|| = 1$.

Denote by \mathscr{A}_i the class of all normed spaces satisfying condition (i) i = 1, 2, 3. It is obvious that if we require in (1) that F is w^* -closed \mathscr{A}_1 will not change. Of course, $\mathscr{A}_1 \supseteq \mathscr{A}_2 \supseteq \mathscr{A}_3$. In §4, 7 we shall show that $\mathscr{A}_1 \supseteq \mathscr{A}_2 \supseteq \mathscr{A}_3$.

The following two lemmas give equivalent conditions to (1) and (2) respectively.

Received July 15, 1965.

^{*} The contribution to the paper of the second author is part of his Ph.D. thesis prepared at the Hebrew University of Jerusalem under the supervision of Professor A. Dvoretzky. The authors wish to thank Professor A. Dvoretzky for the interest he showed in the paper and for his helpful advice.

LEMMA 1. Let X be a normed space; then $X \in \mathcal{A}_1$ if and only if for every finite dimensional subspace $E \subset X$ there exists an infinite dimensional closed subspace $G \subset X$ satisfying the following conditions:

- (a) $G \cap E = \{0\}.$
- (b) If H is the subspace spanned by the elements of E and G, then there exists a projection P_E of H onto E along G.
 - (c) $||P_E|| = 1$.

Proof. Necessity: Take for G the subspace F_{\perp} . If $x \in G \cap E$ then $\|x\| = \sup_{f \in S_F} |f(x)| = 0$, hence x = 0; if x = e + y, $e \in E$, $y \in G$ then $\|e + y\| \ge \sup_{f \in S_F} |f(e + y)| = \sup_{f \in S_F} |f(e)| = \|e\|$. Hence, the transformation P_E defined by $P_E(e + y) = e$ is a projection of H onto E along G and since $\|e\| \le \|e + y\|$, $\|P_E\| = 1$. Sufficiency: For every $f \in E^*$ define $\tilde{f}(e + y) = f(e)$ for each $e + y \in H$. Now, $\tilde{f} \in H^*$, and $\tilde{f}(y) = 0$ for every $y \in G$. By (b) and (c) $\|f\|_H = \sup_{\|e + y\| = 1} |\tilde{f}(e + y)| = \sup_{\|e\| \le 1} |\tilde{f}(e)| = \|f\|_E$. It follows that for every $x \in E$ $\|x\| = \sup_{f \in S_H^*} |\tilde{f}(x)|$. Denote by F the closed subspace of X^* spanned by all Hahn-Banach extensions of the \tilde{f} 's to the whole space X. It is obvious that for each $x \in E$ $\|x\| = \sup_{f \in S_F} |f(x)|$. Since $G \subset F_{\perp}$, F_{\perp} is infinite dimensional.

LEMMA 2. Let X be a normed space. Then $X \in \mathcal{A}_2$ if and only if for every finite dimensional subspace E there exists a closed subspace $G \subset X$ satisfying the conditions (a) (b) and (c) of Lemma 1 and condition,

(d) The co-dimension of G in X is finite.

Proof. The necessity is clear by the proof of Lemma 1. Sufficiency: By [1] p. 25, Lemma 1, if T is the natural mapping of X onto X/G, defined by Tx = x + G, then T^* is a linear isometry of $(X/G)^*$ onto $G^{\perp} \cap X^* = F$. Since, by (d), X/G is finite dimensional, so is F. By (b) and (c), if $x \in E$ $||x + G|| = \inf_{y \in G} ||x + y|| \ge ||x||$. On the other hand $||x + G|| \le ||x||$, hence ||x|| = ||x + G||. For every $x \in E$ there exists a functional $g \in (X/G)^*$ such that ||g|| = 1 and g(x + G) = ||x + G||. But $T^*g \in F$, and

$$(T^*g)(x) = g(Tx) = g(x+G) = ||x+G|| = ||x||.$$

 T^* is isometric so $||T^*g|| = ||g|| = 1$. It follows that for each $x \in E$

$$||x|| = \sup_{f \in S_F} |f(x)|.$$

REMARK 1. The class \mathcal{A}_3 is not empty; every Hilbert space space belongs to \mathcal{A}_3 .

REMARK 2. According to [3] if $X \in \mathcal{A}_2$, and if for every *n* dimensional subspace $E \subset X$ the dimension of *F* is also *n* then *X* is a Hilbert space.

REMARK 3. If $X \in \mathcal{A}_2$ then every subspace $Y \subset X$ also belongs to \mathcal{A}_2 . But as shown in §4 there exists a Banach space X and a closed subspace $Y \subset X$ such that $X \in \mathcal{A}_1$ while $Y \notin \mathcal{A}_1$.

3. We have mentioned that $l_2 \in \mathcal{A}$. Let us discuss now other examples of members of \mathcal{A}_3 .

A Banach space X is called polyhedral (see [4]) if every finite dimensional subspace of X has a polyhedron as its unit ball. J. Lindenstrauss proved in [6, p. 100, Corollary 2] that every polyhedral Banach space X for which X^{**} is a P_1 space belongs to \mathcal{A}_3 . In fact he proved that every finite dimensional subspace of X is contained in a finite dimensional subspace which is a P_1 space, that is, isometric to l_∞^n for a suitable n.

The following converse implication is also a consequence of the theory of J. Lindenstrauss [6]:

LEMMA 3. If $X \in \mathcal{A}_3$ and X^{**} is a P_1 -space then X is polyhedral.

Proof. Let $E \subset X$ be of finite dimension. There exists a projection P of X onto a finite dimensional subspace G which contains E, such that ||P|| = 1.

From [6] p. 16 Corrollary 3 it follows that G is a P_1 space, hence, it is isometric to a space l_{∞}^{m} , so the unit ball of E is a polyhedron.

In connection with polyhedral spaces, let us prove

LEMMA 4. If a Banach space X is polyhedral than $X \in \mathcal{A}_2$.

Proof. Let $E \subset X$ be a finite dimensional subspace. Denote by f_1, f_2, \dots, f_k the extreme points of S_{E^*} , and by \bar{f}_j any Hahn-Banach extension of f_j to the whole space X; $1 \leq j \leq k$. Obviously, any element of E attains its norm on the unit ball of the subspace spanned by f_1^* , f_2 , ..., f_k .

In [4] V. Klee proves that c_0 is polyhedral. Since m is a P_1 space, it follows from the preceding remarks that $c_0 \in \mathcal{A}_3$. We shall give here a direct proof of a slightly stronger result for c_0 .

Let $\{e_k\}_{k=1}^{\infty}$ be the unit vectors basis in c_0 . Let us denote by E_k the closed subspace spanned by the first k unit vectors: $E_k = [e_1, e_2, \dots, e_k]$. E^k will denote the closed subspace $[e_{k+1}, e_{k+2}, \dots]$. Denote by P_k the projection of c_0 onto E_k , defined by $P_k(\sum_{i=1}^{\infty} \gamma_i e_i) = \sum_{i=1}^{k} \gamma_i e_i$. It is known that $||P_k|| = ||I - P_k|| = 1$ for all k.

THEOREM 1. Let $\varepsilon < 1/2$ be a positive number, and E a finite dimensional subspace of c_0 . Then there exists a finite dimensional closed subspace G of c_0 with the following properties:

- (a) $E \subset G \subset c_0$.
- (b) If $\dim(G) = n$ then there exists a linear isometry T of E_n onto G.
- (c) The transformation $P_G = TP_n$ is a projection of c_0 onto G and $||P_G|| = 1$.
- (d) $||I-P_G|| \leq 1+\varepsilon$.
- (e) $(I P_G)(c_0) = E^n$.

Proof. If E is k-dimensional, then by [7, Theorem 2] we can find a basis x_1, x_2, \dots, x_k in E and functionals f_1, f_2, \dots, f_k in X^* such that $f_i(x_j) = \delta_{ij}$ and $||f_i|| = ||x_i|| = 1$ for $1 \le i \le k$. If $x_i = \sum_{i=1}^{\infty} \alpha_i^i e_i$ is the representation of x_i with respect to the usual basis $\{e_i\}_{i=1}^{\infty}$ then an integer n can be found, such that the following conditions are satisfied:

- I. $\left|\alpha_i^j\right| \le \varepsilon \cdot k^{-3}$ for all i > n and $1 \le j \le k$. II. The elements $x_j' = P_n x_j = \sum_{i=1}^n \alpha_i^j e_i$ $1 \le j \le k$ are linearly independent.

Let us denote by E' the subspace spanned by x'_1, x'_2, \dots, x'_k . Let U be the transformation of E to E' defined by $U(\sum_{i=1}^k \beta_i x_i) = \sum_{i=1}^k \beta_i x_i'$. U is a linear one-to-one transformation from E onto E'. Let us show that U is isometric.

If
$$\left\| \sum_{j=1}^k \beta_j x_j \right\| = 1$$
 then

$$1 = \left\| \sum_{j=1}^{k} \beta_{j} x_{j} \right\| = \left\| \sum_{j=1}^{k} \beta_{j} \left(\sum_{i=1}^{\infty} \alpha_{i}^{j} e_{i} \right) \right\| = \left\| \sum_{i=1}^{\infty} \left(\sum_{j=1}^{k} \beta_{j} \alpha_{i}^{j} \right) e_{i} \right\|$$

$$= \sup_{1 \leq i < \infty} \left\{ \left| \sum_{j=1}^{k} \beta_{j} \alpha_{i}^{j} \right| \right\} = \sup_{1 \leq i \leq n} \left\{ \left| \sum_{j=1}^{k} \beta_{j} \alpha_{i}^{j} \right| \right\}.$$

The last equality follows from the following considerations: Since $||f_j|| = 1$ and $\left\| \sum_{i=1}^{k} \beta_{i} x_{i} \right\| = 1 \text{ it follows that } \left| \beta_{j} \right| = \left| f_{j} \left(\sum_{i=1}^{k} \beta_{i} x_{i} \right) \right| \leq 1. \text{ Hence, by I, for } i > n \left| \sum_{j=1}^{k} \beta_{j} \alpha_{i}^{j} \right| \leq \left(\sup_{1 \leq j \leq k} \left| \beta_{j} \right| \right) \cdot \left(\sum_{j=1}^{k} \left| \alpha_{i}^{j} \right| \right) \leq k \cdot \varepsilon \cdot k^{-3} = \varepsilon \cdot k^{-2} \leq 1/2.$ But $\sup_{1 \le i < \infty} \{ |\sum_{j=1}^k \beta_j \alpha_i^j| \} = 1$, therefore the sup is attained from $1 \le i \le n$. We have just proved that

$$1 = \sup_{1 \le i \le n} \left\{ \left| \sum_{j=1}^k \beta_j \alpha_i^j \right| \right\} = \left\| \sum_{i=1}^n \left(\sum_{j=1}^k \beta_j \alpha_i^j \right) e_i \right\|$$
$$= \left\| \sum_{j=1}^k \beta_j \left(\sum_{i=1}^n \alpha_i^j e_i \right) \right\| = \left\| \sum_{j=1}^k \beta_j x_j' \right\| = \left\| U \left(\sum_{j=1}^k \beta_j x_j \right) \right\|.$$

It follows that U is a linear isometry from E onto E'. E' is a k-dimensional subspace of E_n , so there exists a projection Q of E_n onto E' with $||Q|| \le k$. Let T be the transformation from E_n into c_0 , defined by $T = U^{-1}Q + I - Q$. T is linear. We are going to prove that $\|\sum_{i=1}^n \gamma_i e_i\| = 1$ if and only if $\|T(\sum_{i=1}^n \gamma_i e_i)\| = 1$. $\left\| \sum_{i=1}^n \gamma_i e_i \right\| = 1, \quad Q(\sum_{i=1}^n \gamma_i e_i) = \sum_{j=1}^k \beta_j x_j',$ $(I-Q)(\sum_{i=1}^{n}\gamma_{i}e_{i}) = \sum_{i=1}^{n}\delta_{i}e_{i}. \text{ It follows that } T(\sum_{i=1}^{n}\gamma_{i}e_{i}) = \sum_{j=1}^{k}\beta_{j}x_{j} + \sum_{i=1}^{n}\delta_{i}e_{i}.$ Now, $\|U\| = \|U^{-1}\| = 1$ and $\|Q\| \le k$ so $|\beta_{j}| = |f_{j}[U^{-1}Q(\sum_{i=1}^{n}\gamma_{i}e_{i})]| \le k$, hence, by I we get for i > n.

III. $\left| \sum_{j=1}^{k} \beta_{j} \alpha_{i}^{j} \right| \leq k(\sum_{j=1}^{k} |\alpha_{n}^{j}|) \leq k^{2} \varepsilon \cdot k^{-3} < 1/2$ therefore $1 = \left\| \sum_{i=1}^{n} \gamma_{i} e_{i} \right\| = \left\| \sum_{j=1}^{n} \beta_{j} x_{j}^{j} + \sum_{i=1}^{n} \delta_{i} e_{i} \right\| = \left\| \sum_{i=1}^{n} (\sum_{j=1}^{k} \beta_{j} \alpha_{i}^{j} + \delta_{i}) e_{i} \right\| = \sup_{1 \leq i \leq n} \left\{ \left| \sum_{j=1}^{k} \beta_{j} \alpha_{i}^{j} + \delta_{i} \right| \right\},$ where

$$\delta_i = \begin{cases} \delta_i & \text{for } i \leq n \\ 0 & \text{for } i > n \end{cases}$$

(The last equality follows from II). But

1965]

$$\sup_{1 \leq i < \infty} \left\{ \left| \sum_{j=1}^k \beta_j \alpha_i^j + \overline{\delta}_i \right| \right| \right\} = \left\| \sum_{j=1}^k \beta_j x_j + \sum_{i=1}^n \delta_i e_i \right\| = \left\| T \left(\sum_{i=1}^n \gamma_i e_i \right) \right\|,$$

so we have proved that if $\|\sum_{i=1}^n \gamma_i e_i\| = 1$ then $\|T(\sum_{i=1}^n \gamma_i e_i)\| = 1$. A similar method yields the converse implication. An immediate conclusion is the following: $G = T(E_n)$ is *n*-dimensional and T is a linear isometry from E_n onto G. The definition of T ensures that $E = T(E') \subset G$.

If, again, $\sum_{i=1}^{n} \gamma_{i}e_{i} = \sum_{j=1}^{k} \beta_{j}x_{j}' + \sum_{i=1}^{n} \delta_{i}e_{i}$ then $P_{n}TP_{n}(\sum_{i=1}^{\infty} \gamma_{i}e_{i}) = P_{n}T(\sum_{i=1}^{n} \gamma_{i}e_{i}) = P_{n}(\sum_{j=1}^{k} \beta_{j}x_{j}' + \sum_{i=1}^{n} \delta_{i}e_{i}) = \sum_{j=1}^{k} \beta_{j}x_{j}' + \sum_{i=1}^{n} \delta_{i}e_{i} = \sum_{i=1}^{n} \gamma_{i}e_{i} = P_{n}(\sum_{i=1}^{\infty} \gamma_{i}e_{i})$, hence $P_{n}TP_{n} = P_{n}$, and so $TP_{n}TP_{n} = TP_{n}$. It follows that $P_{G} = TP_{n}$ is a projection of c_{0} onto $G = T(E_{n})$, with $\|P_{G}\| = 1$; (for $1 \leq \|TP_{n}\| \leq \|T\| \cdot \|P_{n}\| = 1$). Let us remark that the definition of T and the same methods yield the following inequality: For each $\sum_{i=1}^{n} \gamma_{i}e_{i} \in E_{n}$ $\|\sum_{i=1}^{n} \gamma_{i}e_{i} - T(\sum_{i=1}^{n} \gamma_{i}e_{i})\| \leq \varepsilon \|\sum_{i=1}^{n} \gamma_{i}e_{i}\|$. It follows that $\|I - TP_{n}\| = \|I - P_{n}\| + \|P_{n} - TP_{n}\| \leq \|I - P_{n}\| + \|P_{n}\| \cdot \|I_{0} - T\| \leq 1 + \varepsilon$, where I_{0} denotes the identity on E_{n} . The proof of (e) is left to the reader.

COROLLARY 1. Theorem 1, with slight modifications in its formulation, remains true if we replace c_0 by $c_0(S)$, where S is an infinite set.

In fact, if $E \subset c_0(S)$ is of finite dimension, then there exists a sequence $S_0 \subset S$ such that x(s) = 0 for every $x \in E$ and $s \in S - S_0$. Denote by the subspace

$$\{x: x \in c_0(S), x(s) = 0 \text{ for all } s \in S - S_0\}.$$

The natural projection P of $c_0(S)$ onto H is of norm 1, and so is I-P. H is isometric to c_0 , so by Theorem 1 there exists a projection P_G of H onto a finite dimensional closed subspace G which contains E, with $||P_G|| = 1$. P_GP is a projection of norm 1 of $c_0(S)$ onto G. By the same Theorem 1, G is isometric to a space I_∞^n . It is easy to see that since $||I-P_G|| \le 1 + \varepsilon$ (I_0 is the identity on H) $||I-P_GP|| = ||(I_0-P_G)P + I-P|| = \max\{||(I_0-P_G)P||, ||I-P||\}$ $\le \max\{1+\varepsilon,1\} = 1+\varepsilon$.

REMARK 4. The properties (a) to (e) do not characterize c_0 . It is easy to prove Theorem 1 for the space $(R_1 \oplus R_2 \oplus R_3 \cdots)_{c_0} = X$ instead of c_0 . (R_k denotes the k-dimensional euclidean space.) J. Lindenstrauss proved in [5] that X is not isomorphic to c_0 .

4. Now we shall show that the space c has not the property (1). From this will follow that no infinite dimensional space C(S) with S compact Hausdorff has the property (2). This proves also that, as was expected, none of the properties discussed here is invariant under isomorphisms.

Let $a = \{a_i\}_{i=1}^{\infty}$ be an element of c such that $a_i \neq a_j$ if $i \neq j$ and $0 \leq a_i \leq 1$, $a_0 = \lim_{i \to \infty} a_i \neq a_j$ for $j = 1, 2, 3, \cdots$. We shall consider the plane determined by the null vector, the given a and the vector $\{(1 - a_i^2)^{1/2}\}_{i=1}^{\infty}$. The family of vectors $[\{a_n a_i + (1 - a_n^2)^{1/2}(1 - a_i^2)^{1/2}\}_{i=1}^{\infty}]$ $n = 0, 1, 2, \cdots$ is contained in the plane and the only point of the unit ball of l_1 at which the nth vector of the family attains its norm is the n + 1th unit vector of l_1 . This follows from the fact that the nth coordinate (the limit) of $\{a_n a_i + (1 - a_n^2)^{1/2}(1 - a_i^2)^{1/2}\}_{i=1}^{\infty}$ is 1 where $n \geq 1$ (n = 0) and the other are positive but less than 1. Hence, the smallest closed subspace of l_1 on the unit ball of which every vector from our plane attains its norm is l_1 itself.

The same plane taken this time in the space m shows that this space also has not the property (1). (We use the fact that l is w^* -dense in m^*).

Considering in C[0,1] the subspace spanned by $f_1(x) = x$, $f_2(x) = 1 - x^2$ it can be proved that C[0,1] does not satisfy condition (1).

Now we are able to display a space which belongs to \mathscr{A}_1 but fails to belong to \mathscr{A}_2 . If X is a space which does not belong to \mathscr{A}_2 , the space $Y = (l_2 \oplus X)_{l_1}$ is the desired one. Indeed, the conjugate of Y is $(l_2 \oplus X^*)_m$ and if E is a finite dimensional subspace of Y any element of E attains its norm on the unit ball of $(P(E) \oplus X^*)_m \subset (l_2 \oplus X^*)_m$, where P denotes the natural projection of Y onto l_2 . The annihilator of $P(E) \oplus X^*$ is the orthogonal complement of P(E) in l_2 which is obviously infinite dimensional. But Y fails to have the property (2) since its subspace X has not this property. (See Remark 3). If we suppose that X does not belong even to \mathscr{A}_1 , like the space C for instance, we see from the above example that property (1) of a space is not inherited by its subspaces.

5. We shall prove now that the property (1) is not valid in l_1 . Thus no infinite dimensional L-space has property (2). Let $a = \{a_i\}_{i=1}^{\infty}$, $b = \{b_i\}_{i=1}^{\infty}$ be two elements of l_1 such that

$$\frac{a_i}{b_i} > \frac{a_{i+1}}{b_{i+1}}$$
 , $b_i > 0$

for every i and consider the subspace generated by them. For a given natural number n let α_n be a scalar such that $(a_n/b_n) > \alpha_n > (a_n+1)/(b_n+1)$. The vector $a - \alpha_n b$ attains its norm on the unit ball of m at the point $\{\text{sign}(a_i - \alpha_n b_i)\}_{i=1}$ and we have:

$$sign(a_i - \alpha_n b_i) = 1 1 \le i \le n$$

$$sign(a_i - \alpha_n b_i) = -1$$
 $i \ge n+1$.

Choosing a scalar α_0 such that $\alpha_0 > (a_1/b_1)$ the vector $\{a_i - \alpha_0 b_i\}_{i=1}^{\infty}$ will attain its norm only at the point $(-1, -1, -1, \cdots)$ of S_m . The smallest w^* -closed sub-

space of m which contains all the points of m found above is m itself, and this proves our statement.

The space $L_1[0,1]$ fails also to have property (1). To see this it is enough to take the subspace generated by $f_1(x) = 1$ and $f_2(x) = x$ and to use the fact that the characteristic functions of intervals form a total family over $L_1[0,1]$.

One may ask if the completion of a normed space satisfying one of the conditions (1), (2), (3) must satisfy this condition. The answer is negative since the linear subspace of l_1 generated by the unit vectors is a member of \mathcal{A}_3 while its completion fails to belong even to \mathcal{A}_1 .

THEOREM 2. The spaces l_p $1 \le p < \infty$, where p is not an even integer, do not belong to the class \mathcal{A}_2 .

THEOREM 3. If (S, Σ, μ) is a measure space, the real space $L_p(S, \Sigma, \mu) = L_p$ with p an even integer belongs to \mathcal{A}_2 .

In proving these theorems we shall constantly make use of the known facts that the function f(t) of $L_p(p > 1)$ at aims its norm on the unit ball of $L_q(1/p + 1/q = 1)$ at the point $||f||^{-p} \cdot |f(t)|^{p-1} \operatorname{sign} f(t)$ and only at this point. We shall refer everywhere to $|f(t)|^{p-1} \operatorname{sign} f(t)$ since this function belongs to the same subspaces of L_q as $||f||^{1-p} \cdot |f(t)|^{p-1} \operatorname{sign} f(t)$ does.

Proof of Theorem 2. Let n be any integer greater than p. (If p is not an integer n may be any integer greater than 1). We shall consider the two dimensional subspace E_n of l_p^n spanned by $a_n = (1, 1, \dots 1)$ and $b_n = (1, 2, 3, \dots, n)$ and we shall show that there is no proper subspace of l_q^n which contains all the points of the unit ball having a support hyperplane generated by an element of E_n .

Assume that n is an odd integer. Denote

$$P_i(\lambda) = (1 + \lambda i)^{p-1} = |1 + \lambda i|^{p-1}$$
 $1 \le i \le n$.

Since $a_n + \lambda b_n \in E_n$ for any real λ , in order to prove the assertion it will be enough to display n independent vectors of the the form

$${P_1(\lambda)\operatorname{sign}(1+\lambda), P_2(\lambda)\operatorname{sign}(1+2\lambda), \cdots, P_n(\lambda)\operatorname{sign}(1+n\lambda)}.$$

We shall give to λn different values submitted to the conditions:

$$\lambda_i \ge 0 \qquad 1 \le i \le p$$

$$-\frac{1}{n-j} < \lambda_{p+j} < -\frac{1}{n-j+1} \qquad 1 \le j \le n-p.$$

The corresponding vectors are the rows of the matrix:

$$\begin{vmatrix} P_1(\lambda_1), & P_2(\lambda_1), \cdots & & & & & & & \\ P_1(\lambda_2), & P_2(\lambda_2), \cdots & & & & & & \\ \vdots & \vdots & & & & & & \\ P_1(\lambda_p), & P_2(\lambda_p), \cdots & & & & & & \\ P_1(\lambda_p), & P_2(\lambda_p), \cdots & & & & & \\ P_1(\lambda_{p+1}), & P_2(\lambda_{p+1}), \cdots & & & & & \\ P_1(\lambda_{p+1}), & P_2(\lambda_{p+1}), \cdots & & & & & \\ P_1(\lambda_{p+2}), & P_2(\lambda_{p+2}), \cdots, P_{n-2}(\lambda_{p+2}), -P_{n-1}(\lambda_{p+2}), & & -P_n(\lambda_{p+2}), \\ \vdots & \vdots & & & & \vdots \\ P_1(\lambda_n), & P_2(\lambda_n), \cdots, & P_p(\lambda_n), -P_{p+1}(\lambda_n) - \cdots & & -P_n(\lambda_n), \end{aligned}$$
 its rank is less than n , there exist n scalars μ_k $1 \leq k \leq n$ such that

If its rank is less than n, there exist n scalars μ_k $1 \le k \le n$ such that

I
$$\sum_{k=1}^{n} \mu_k P_k(\lambda_i) = 0$$

$$1 \le i \le p$$
II
$$\sum_{k=1}^{n-j} \mu_k P_k(\lambda_{p+j}) - \sum_{l=n-j}^{n} \mu \mu_l P_l(\lambda_{p+j}) = 0$$

$$1 \le j \le n-p$$

Since the degree of $P_k(\lambda)$ is p-1, we deduce from I that

III
$$\sum_{k=1}^{n} \mu_k P_k(\lambda) = 0$$

for any λ . Taking in II j=1, in III $\lambda=\lambda_{p+1}$ and subtracting one equality from the other we get $\mu_{p+1}=0$. Continuing in this way we get $\mu_{p+j}=0$ for $1 \le j \le n-p$. Hence, III may be written as

IV
$$\sum_{k=1}^{p} \mu_k P_k(\lambda) = 0.$$

But it is easy to see that these polynomials are linearly independent, and this proves our assertion about l_p^n where p is an odd integer.

Now suppose that p is not an integer. The proof of our assertion in this case will be achieved if we show that n positive numbers $\lambda_1, \lambda_2, \dots \lambda_n$ can be found such that $D_n(\lambda_1, \lambda_2, \dots, \lambda_n) = \det(1 + i\lambda_i)^{p-1} \neq 0$. For n = 2 it is easy to check that if $\lambda_1 \neq \lambda_2$ then $D_2(\lambda_1, \lambda_2) \neq 0$. Suppose that n-1 positive numbers $\lambda_1, \lambda_2, \dots, \lambda_{n-1}$ were found such that

$$V D_{n-1}(\lambda_1, \lambda_2, \dots, \lambda_{n-1}) \neq 0$$

but

VI
$$D_n(\lambda_1, \lambda_2, \dots, \lambda_{n-1}, \lambda) \neq 0$$

for any $\lambda > 0$. Differentiating VI n-1 times we get

$$\begin{vmatrix} (1+\lambda_{1})^{p-1}, & (1+2\lambda_{1})^{p-1}, \cdots & (1+n\lambda_{1})^{p-1} \\ \vdots & & \vdots & & \vdots \\ (1+\lambda_{n-1})^{p-1}, & (1+2\lambda_{n-1})^{p-1}, \cdots & & (1+n\lambda_{n-1})^{p-1} \\ (1+\lambda)^{p-1-j}, & 2^{j}(1+2\lambda)^{p-1-j}, \cdots & & n^{j}(1+n\lambda)^{p-1-j} \\ & & & & j=1,2,\dots,n-1. \end{vmatrix} = 0$$

These equalities together with VI form a linear system of equations the coefficients being the elements of the last rows of the determinants. From V we deduce that this system has non-trivial solutions. Therefore

$$\begin{vmatrix} (1+\lambda)^{p-1}, (1+2\lambda)^{p-1}, \cdots & , (1+n\lambda)^{p-1} \\ (1+\lambda)^{p-2}, 2(1+2\lambda)^{p-2}, \cdots & , n(1+n\lambda)^{p-2} \\ \vdots & \vdots & \vdots \\ (1+\lambda)^{p-n}, 2^{n-1}(1+2)^{p-n}, \cdots & n^{n-1}(1+n\lambda)^{p-n} \end{vmatrix} = 0$$

for any $\lambda > 0$. This equality is obviously false and, consequently VI cannot be true for any $\lambda > 0$.

Now we shall construct a two-dimensional subspace of l_p with the property that its elements attain their norms on the unit ball of l_q at points which span an infinite dimensional subspace of l_q . This plane is spanned by the vectors a and b constructed as follows: The nth block of n coordinates in a is

$$n^{-2} \cdot (1 + 2^p + 3^p + \dots + n^p)^{-1/p} \cdot (1, 1, 1, \dots, 1),$$

and in b is $n^{-2} \cdot (1 + 2^p + 3^p + \cdots n^p)^{-1/p} \cdot (1, 2, 3, \cdots, n)$, for $n = 1, 2, 3, \cdots$. From the above discussion we know that this plane has the required property.

Proof of Theorem 3. We shall prove that for any n-dimensional subspace F of L_p there exists a subspace F of L_q of dimension C_{n+p-2}^{n-1} such that $\|x\| = \sup_{f \in S_F} |f(x)|$ for any $x \in E$. Let $x_1(t), x_2(t), \dots, x_n(t)$ be a basis of E. We have to determine the dimension of the space spanned by the functions $(\sum_{i=1}^n \lambda_i x_i(t))^{p-1} = \left|\sum_{i=1}^n \lambda_i x_i(t)\right|^{p-1} \cdot \text{sign } (\sum_{i=1}^n \lambda_i x_i(t))$. These functions are linear combinations of the functions $x_1^{k_1} \cdot x_2^{k_2} \cdots x_n^{k_n}$ for all possible non-negative integers k_1, k_2, \dots, k_{3n} which satisfy $\sum_{i=1}^n k_i = p-1$. Any function of this type belongs to L_q (this can be seen if we use the fact that L_q is a lattice) and there are C_{p+n-2}^{n-1} such functions. Consequently all the functions $(\sum_{i=1}^n x_i(t))^{p-1}$ lie in a subspace of L_q which has the dimension C_{p+n-2}^{n-1} .

An immediate consequence of Theorem 2 is the fact that no space L_p (μ) with $p \neq 2k$, $k = 1, 2, 3, \cdots$ satisfies condition (2).

7. Let us discuss now reflexive Banach spaces X for which S_{X^*} is strictly convex. By [8] and [2], the last property is equivalent to the following one: Every bounded linear functional f defined on a subspace E of X has one and only one Hahn-Banach extension f.

LEMMA 5. If a reflexive space X belongs to \mathcal{A}_3 , and S_{X^*} is strictly convex then $X^* \in \mathcal{A}_3$.

Proof. Again by [7], given a finite dimensional subspace $F \subset X^*$, one can find a basis f_1, f_2, \dots, f_k for F and functionals x_1, x_2, \dots, x_k in X such that $||x_i|| = ||f_i|| = 1$ and $f_i(x_j) = \delta_{ij}, 1 \le i \le k$ $1 \le j \le k$. Denote by E the subspace of X spanned by x_1, x_2, \dots, x_k . Since $X \in \mathcal{A}_3$, there exists a subspace $G \subset X$ satisfying the following conditions:

- (a) G is of finite dimension,
- (b) $E \subset G$,
- (c) There exists a projection P_G of X onto G.
- (d) $||P_G|| = 1$.

Denote $(I - P_G)(X) = H$. Each $x \in X$ has a unique representation x = y + z where $y \in G$ and $z \in H$. For every element $\phi \in G^*$ define: $f_{\phi}(y + z) = \phi(y)$. f_{ϕ} is an extension of ϕ , it is linear and by (d) $||f_{\phi}|| = \sup_{||y|| \le 1} |f_{\phi}(y + z)| = \sup_{||y|| \le 1} |\phi(y)| = ||\phi||$.

Denote by M the subspace $\{f_{\phi}: \phi \in G^*\}$ of X^* . It is easy to see that M is isometric to G^* and so it is of finite dimension. Moreover, there exists a projection Q of X^* onto M, with $\|Q\| = 1$. For $1 \le i \le k$ $f_i \in M$, because otherwise the restriction ϕ_i of f_i to E would admit two Hahn-Banach extensions $-f_i$ and f_{ϕ_i} . But this is impossible by the hypothesis of the lemma. It follows that $F \subset M$.

Corollary. For p = 2n (n an integer ≥ 2) $L_p \in \mathcal{A}_2$ but $L_p \notin \mathcal{A}_3$.

Proof. If $L_p \in \mathcal{A}_3$ then $L_q \in \mathcal{A}_3$ where 1/p + 1/q = 1. But by Theorem 2 $L_q \notin \mathcal{A}_3$, since q = p/p - 1 = 2n/(2n - 1) is not an integer.

REFERENCES

- 1. M. M. Day, Normed linear spaces, Springer Verlag, 1958.
- 2. S. R. Foguel, On a theorem of A. E. Taylor, Proc. Amer. Math. Soc. 9 (1958), 325.
- 3. S. Kakutani, Some characterizations of euclidean space, Jap. J. Math. 16 (1939), 93.
- 4. V. Klee, Polyhedral sections of convex bodies, Acta Math. 103 (1960), 243.
- 5. J. Lindenstrauss, On some subspaces of c₀ and l₁, Bull. Res. Council of Israel, 10F (1961), 74.
- 6. ——, Extension of compact operators, Memoirs Amer. Math. Soc. 48 (1964).
- 7. A. E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer. Math. Soc. 53 (1947), 614.
 - 8. ——, The extension of linear functionals, Duke Math. J. 5 (1939), 538.